

Airlock[®] with Presslock[®] Operative Technique

www.novastep.life

. Indications	03
. Contraindications	03
. 1 - Technical Features	04
. 2 - The Airlock Plating Range	05

Surgical Technique

. 1 - First MTP Joint Arthrodesis 2 - Lapidus Procedure	

References

. Implants	25
. Instrumentation	26
. Trial Implants	28

This document provides technical guidance for the proper usage of the Airlock implant range, however Novastep does not practice medicine and does not recommend this or any other surgical technique. Each surgeon must consider the specific needs of each patient and is responsible for making applicable adjustments and determining and using the appropriate techniques for implanting the device in each given case.

Indications

The Airlock[®] osteosynthesis plate systems are indicated for stabilization and fixation of fresh fractures, revision procedures, joint fusions and reconstruction of small bones of the hands, feet, wrists and ankles, fingers and toes. The system may be used in both adult and pediatric patients.

Typical indications :

Forefoot :

- . First MTP joint arthrodeses (Hallux-valgus Hallux Rigidus).
- . Revisions of first MTP joint arthrodeses.
- . Opening or closing Basal osteotomies (Hallux Valgus).
- . Fixation of first metatarsal fractures.

Midfoot / Rearfoot :

- . Talo-navicular arthrodeses.
- . Lapidus arthrodeses.
- . Partial or complete Lisfranc arthrodeses.
- . Calcaneo-cuboid arthrodeses.
- . Evans and Cotton osteotomies.
- . Malerba and Dwyer osteotomies.
- . Tarsectomies.

Contraindications

- . Severe muscular, neurological or vascular deficiency in the extremity concerned.
- . Bone destruction or poor bone quality, likely to impair implant stability.
- . Surgical procedures other than those listed in the Indications Section.
- . Known or suspected allergy to any materials from which the implants are made.
- . Use of this implant together with implants of another origin not specifically recommended by Novastep.
- . Presence of active infection.

Note : See package insert for a complete list of potential adverse effects, warnings, precautions, contraindications and Instructions For Use (IFU).

Airlock is a comprehensive plating system that addresses forefoot, midfoot and rearfoot pathologies, combining a unique, **indication-specific design**, **contoured low-profile configurations**, **compressive holes** and **polyaxial** and **monoaxial** screw options.

The Presslock[®] universal Fusion plates feature an innovative locking slot that ensures a stable construct by allowing an additional 1.5 mm of fixed linear compression.

1 - Technical Features and Benefits

presslock°

plates

Presslock® compression holes allow for an additional 1.5 mm of fixed linear compression with a Ø 3.5 mm locking screw, providing strength and stable fixation. *Available on Presslock® universal compression locking Fusion*

Presslock[®] 3 steps procedure: 1) Drill 2) Compress 3) Lock

Features

. Indication specific precountoured plates. . Low Profile design reduces soft issue irritation and subcutaneous discomfort. . Anatomically positioned compression holes corresponding to areas with high density bone. . Titanium TA6V ELI Alloy.

2 - Airlock® Range

MTP - Left & Right Option

Short - Thickness: 1.35 mm

Standard - Thickness: 1.35 mm

- Compression hole

Universal Fusion Plates

Medium

presslock

Straight plates

H-plates - Thickness: 1.6 mm - PressLock® compression

locking hole

Short

Lisfranc

T-plates

H-plates

- Thickness: 1.5 mm

- Compression hole

Long

Long

- Thickness: varies from 1.3 to 1.6 mm along the joint line
- Compression hole
- Central port hole design allows for graft insertion and snap-off screw

Lapidus

- Universal flat plate

- Thickness: 1.5 mm
- Compression hole

39 31 1 C Short Long

27

М

37

S

24

.

Basal Osteotomy - Left & Right Option

Utility

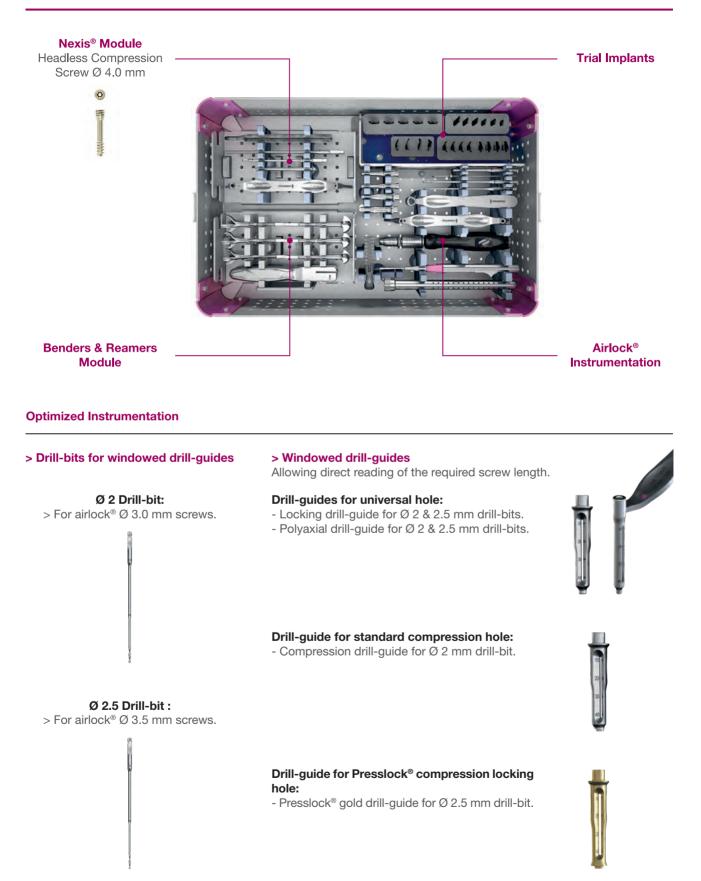
37

- 6 versions :

- 2, 3, 4, 5, 6 & 7 holes
- Thickness: 1.5 mm
- Compression hole

05

Monoaxial & Polyaxial System - Ø 3.0 mm & 3.5 mm


- Polyaxial Non Locking screws 0 - Monoaxial Locking screws E - Conical Head - Self tapping - Self-retaining screw driver tip head design +/- 15° /- 159 **Driver Recess** T10 Τ8 Т8 Distal Thread Diameter Ø 3.0 mm Ø 3.5 mm Ø 4.0 mm Length 10 - 30 mm* 10 - 40 mm* 18 - 60 mm** K-Wires _ _ Ø 1.4 mm Drill Bit Ø 2.7 mm Ø 2.0 mm Ø 2.5 mm

* 2 mm increments. ** 2 mm increments from 18 to 50 mm; 5 mm increments from 50 to 60 mm.

06

Nexis Ø 4.0 mm

3 - Instrumentation

3.1 - Screw Fixation Process

The Airlock[®] Ø 3.0 and 3.5 mm locking and Non Locking screws may be used in all Airlock[®] plate fixation holes however:

- Standard compression holes accommodate Ø 3.0 mm non-locking screws only;
- $\mathsf{Presslock}^{\otimes}$ compression locking holes accommodate Ø 3.5 mm locking screws only.

Screw insertion follows an intuitive three-step procedure: drilling, measurement and screw insertion. Each instrument is conveniently organized and color-coded.

Color code:

Airlock[®] screws:

- : Instrumentation for Ø 3.0 mm screws.
 - : Instrumentation for Ø 3.5 mm screws.

Instrumentation for Ø 4.0 mm screws.

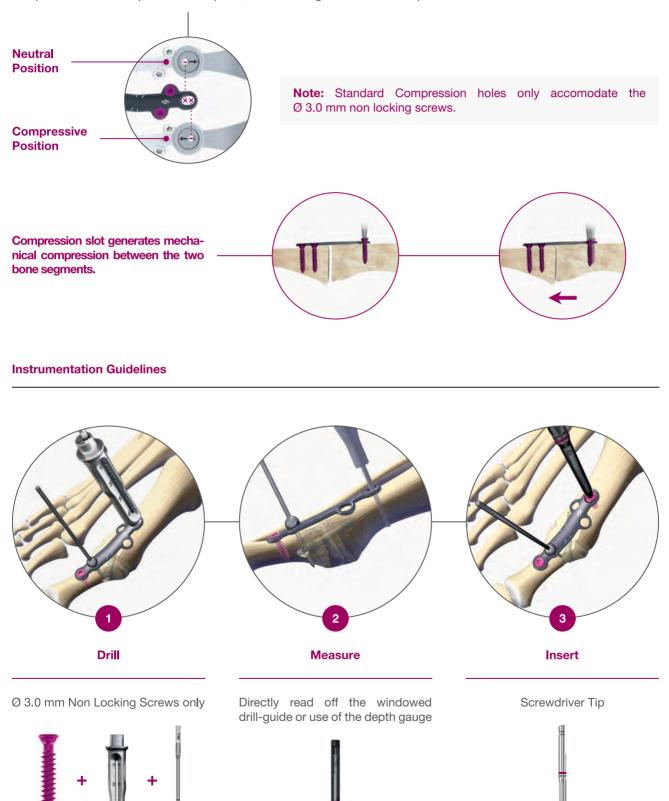
Trick:


To position a plate, thread two locking drill-guides into two universal holes. Position the plate as desired using the drill-guides to manipulate it's orientation.

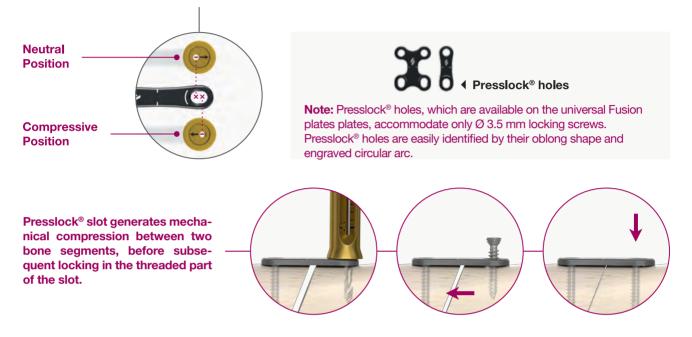
Drill the first screw hole with the drill-bit of the correct diameter. Leave the drill-bit in place to keep the position, and drill the second screw hole with a second drill-bit. Determine the appropriate screw length by reading the length directly off the windowed drill-guide where it matches the calibrated etching on the drill bit, or by using the separate depth gauge. Select the proper length screw and withdraw the drill guide prior to insertion. Determine the screw length for the other hole before inserting the screw.

In case of uncertainty, screw lengths may be verified by means of the screw indicator gauge.

3.1.1 - Universal hole: First, fixate the side of the plate that is opposite to the standard compression hole or Presslock[®] hole, with or without locking. Thread the locking drill-guide in one of the threaded holes or position the polyaxial drill-guide and drill with the appropriate diameter drill-bit. Determine the appropriate screw length by reading the measurement directly off the windowed drill-guide or by using the depth gauge. Insert the selected screw with the self-retaining screwdriver tip.

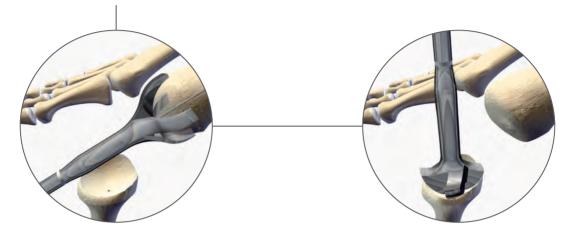


Measure Direct reading off the windowed drill-guide or use of the depth gauge


Instrumentation Guidelines

3.1.2 - Compression Hole : Start plate fixation opposite the side of the compression hole, shown on the previous page. The oblong drill-guide allows both neutral or compressive screw fixation, giving 1.5 mm of additional compression. If no compression is required, use the drill guide in its neutral position.

3.1.3 Presslock® compression locking hole: Start plate fixation opposite the side of the Presslock® compression slot, as shown on page 9. The Presslock® drill-guide allows neutral or compressive screw fixation. To achieve compression with locking, position the Presslock® gold drill-guide in the Presslock® hole in it's compressive position. If no compression is required, use the Presslock® drill-guide in its neutral position.



Instrumentation Guideline

3.2 - Concave / Convex Reamers

Specific instrumentation, with 3 Concave / Convex reamer sizes (Ø 18 mm, Ø 20 mm, Ø 22 mm) facilitate precise joint surface contouring and positioning. Always be sure to use the concave and convex reamers of the same diameter.

3.3 - Plate Bender Procedures

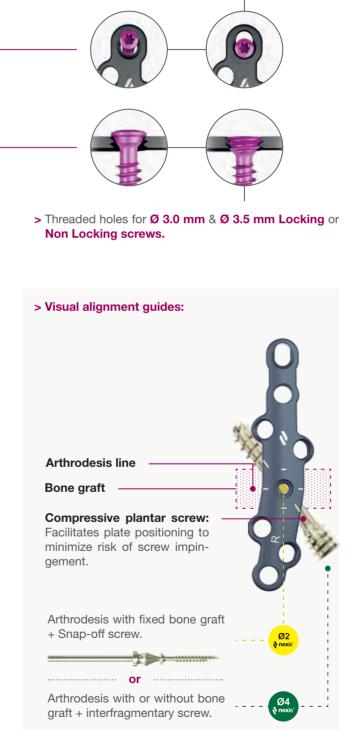
Most of the time bending is not necessary. In some rare cases plate benders may be required. The following guidelines must to be considered :

- Bend the plate only in one direction.
- Never reverse-bend a plate.
- Always ensure that the threaded holes of a plate are not compromised during bending.
- It is not recommended to bend the plate at its extremities.

1 - First MTP Joint Arthrodesis

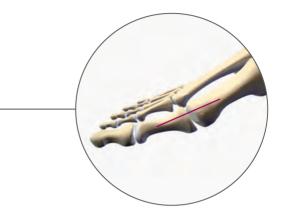
MTP Plating System Benefits

- > 3 sizes available in Left & Right configurations: Short, Standard & Long.
- Same states at the second state of the second state of the second states at the second state of the second states at the second states


Valgus 10°

> The anatomic plates are anatomically contoured and designed with 0° dorsiflexion, delivering 15° of metatarsophalangeal dorsiflexion while preserving 10° of anatomical phalangeal valgus.

> Low-Profile plate design reduces soft tissue irritation around the MTP joint. Thickness: 1.3 mm.

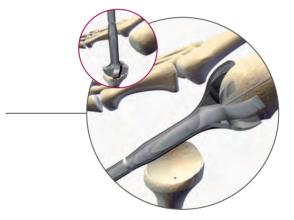

MTP Long: for improved strength, the plate increases in thickness from 1.3 mm to 1.6 mm along the joint line.

> Compression slot for optimal compression.

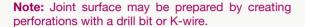
1 - Incision & Exposition

A medial incision is most commonly used for First MTP joint exposure. A dorsal approach could also be considered. It is recommended to identify and protect the dorsal collateral nerve to avoid risk of damage during opening or closing steps. An exostectomy is performed with an oscillating saw and a large circumferential arthrolysis is performed to expose the entire joint area. Osteophytes are completely resected.

2 - Metatarsal & Phalangeal Preparation


Care should be taken to protect skin and soft tissue during the joint surface preparation. Two options may be considered : Flat Cut Technique or Cup & Cone Technique.

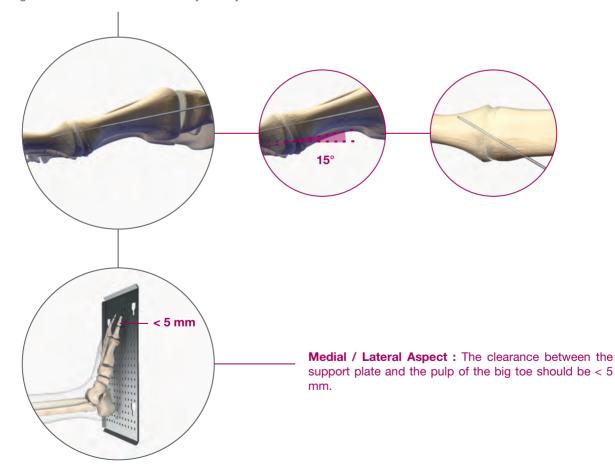
- The Cup & Cone Technique allows an easier and more precise adjustment that preserves bone stock, but requires more exposure. Adapt the cut with consideration for first ray length and overall bone quality (cancellous and sclerotic bones).


- In case of shortening, flat cuts are recommended.

- In case of poor quality bones or osteoporotic bones, preparation with gouge forceps is preferred.

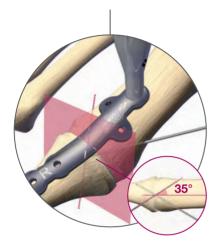
- In case of sclerotic bone, the Cup & Cone Technique is recommended. To facilitate fusion, roughen the counteropposing surfaces with gouge forceps, oscillating saw or bone scraper prior to application of the Cup & Cone reamers.

Displace the phalanx plantarly, exposing the metatarsal head (it is recommended to start the metatarsal preparation first to enable proper exposure of the phalanx). Using a power drill, place a Ø 1.6 mm K-Wire through the center of the metatarsal head and into the diaphysis of the metatarsal. Utilize the largest reamer size to start the metatarsal reaming process. Reaming of the phalanx is performed in a similar fashion to the metatarsal head.

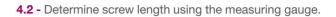

3 - Temporary Fixation

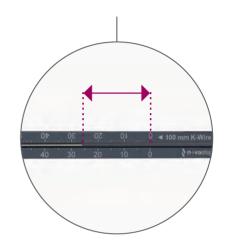
Provisionally stabilize the joint by inserting a 1.6 mm K-Wire from the dorsal medial aspect of the first metatarsal to the dorsal lateral cortex of the first phalanx.

Check the correct position (approximately 15° of dorsiflexion) using the support plate, located inside the lid of the instrument tray as pictured below :

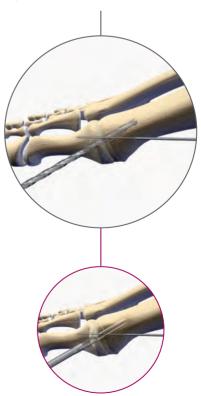

- Dorsal Aspect : Hallux is parallel to the second toe and nail is parallel to the ground.

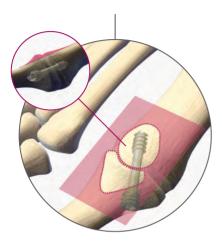
- Medial / Lateral Aspect : With the patient's heel resting on the plate, the pad of the big toe should be slightly elevated (<5 mm). The great toe needs to have the ability to stay in contact with the floor.




4 - Plantar Screw Insertion

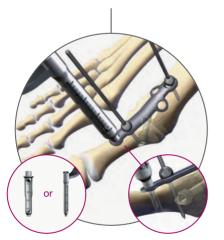
4.1 - Place the trial implant using the plate drill guide. Plantar screw guide marks on the surface of the trial implant depict the recommended orientation for insertion of the Ø 1.4 K-Wire (approximately 35° relative to the metatarsal axis). Identify the appropriate plate reference according to the trial implants.

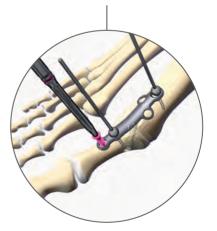

4.3 - Option 1 : Self-drilling Screw : Use the T10 screwdriver tip with driver handle to insert the Ø 4.0 mm compressive screw manually or with a power tool. Check to ensure proper stability at the osteotomy site.


4.4 - Option 2 : Pre-drilling and Countersink : Prepare the cortex using the dedicated Ø 2.7 mm Nexis drill bit and Ø 3.7 countersinking reamer. Insert the screw with the T10 screwdriver tip.

5 - Plate Positioning

5.1 - Plate surface preparation : If necessary, flatten the dorsal surface using an oscillating saw or gouge forceps.

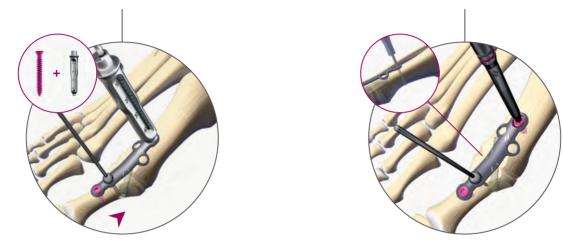

5.2 - Plate positioning : With the joint now stabilized, the plate should be placed over the joint and positioned according to the patient's anatomy. When the proper orientation is determined, insert the spherical positioning pins to secure the plate over the bone as illustrated below.



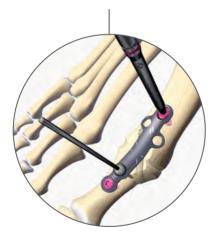
5.3 - Distal Screw Insertion : The steps for inserting Airlock[®] screws and the use of associated instruments are specified in the Introduction (paragraphs 3.1.1 and 3.1.2).

Prepare the distal - most screw hole using the Ø 2.0 mm drill bit and locking drill-guide (for Locking screws) or the polyaxial drill-guide (for Non Locking screws).

Determine the appropriate screw length by directly reading off the windowed drill-guide or by using the depth gauge. Insert the selected screw.



Note : It is recommended to first insert a Non Locking screw prior to introducing Locking screws to position the plate flush with respect to the cortical surface. It is also recommended to perform distal fixation prior to inserting the proximal screws and always prior to using the proximal compression hole.


6 - Proximal Screw Insertion

Using the compressive drill-guide, drill the compression screw hole for Non Locking screw. Each proximal wire must be removed prior to compressing the joint. If compression is not required, use the compressive drill guide in its neutral position (see Paragraph 3.1.2 of the Introduction). Determine the appropriate screw length and insert the screw until full compression is achieved.

7 - Screw Insertion

Insert remaining screws and check the stability of the assembly.

2 - Talo-navicular Arthrodesis

1 - Incision & Exposure

A dorsal incision is most commonly used for TN joint exposure. A medial incision can be may be performed at the surgeon's discretion.

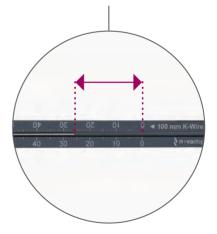
Once the joint is exposed, position a closed arms bone distractor on the talus and navicular bones. Sterile threaded wires are available for use with the distractor. Distract the joint and remove articular cartilage using curette, rongeur or small osteotome.

A K-wire can be placed across the talo-navicular joint to stabilize the joint.

2 - Trial Implants

Use the trial Presslock[®] universal Fusion plates to determine the appropriate shape and size.

Depending on the joint anatomy, 1 or 2 Straight plates or 1 H plate can be used, all available in Short, Medium or Long sizes.



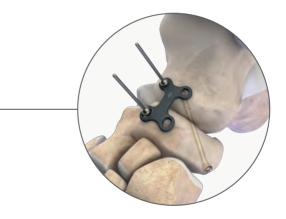
H plates

3 - Inter-fragmentary Compression Screw Insertion

Insert a Ø 1.4 mm K-wire from the navicular to the talus and determine the screw length using the depth gauge.

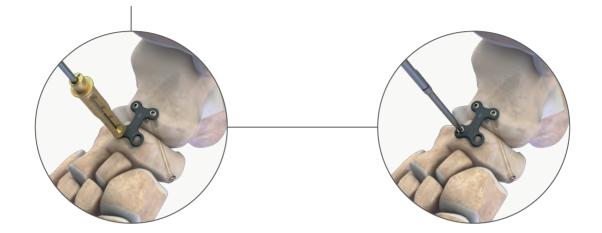
Option 1 : Self-drilling Screw : Use the T10 screwdriver tip to insert the Ø 4.0 mm compressive screw manually with driver handle or with a power tool. Check to ensure proper stability at the osteotomy site.

Option 2 : Pre-drilling and Countersink : Prepare cortex by using the dedicated Ø 2.7 mm Nexis drill bit and Ø 3.7 countersinking reamer. Insert the screw with theT10 screw-driver tip.

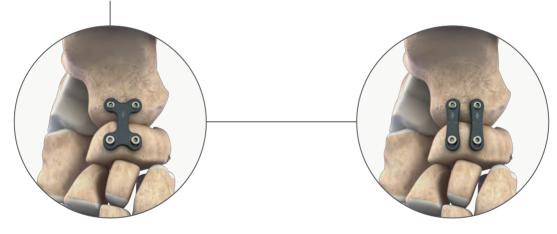

4 - Plate Positioning

Position the Presslock[®] universal Fusion plate according to the patient's anatomy. Secure the plate with temporary fixation pins.

Screw insertion: the steps for inserting Airlock[®] screws and the use of associated instruments are specified in the *Introduction - paragraphs 3.1.1 and 3.1.3.*


4.1 Universal hole: Ø **3.5 mm screw insertion:** Prepare the screw hole using either the locking drill guide for Locking screws or the polyaxial drill-guide for Non Locking screws, with the Ø 2.5 mm drill-bit.

Determine the appropriate screw length by either directly reading through the windowed drill-guide or using the depth gauge after removing the drill-guide, and insert the appropriate screw.



4.2 - Presslock® hole: Ø **3.5 mm locking screw insertion:** Place the Presslock® drill-guide into the compression locking Presslock® hole with the drill guide arrow facing the joint. Prepare the screw hole with the Ø 2.5 mm drill-bit. Determine the appropriate screw length by either directly reading through the windowed drill-guide or by using the depth gauge after removing the drill-guide and insert the locking screw into the locking compression slot. Repeat these steps for the second Presslock® hole if an H-plate has been used. Check the construct stability and confirm placement using fluoroscopy.

4.3 - Final Positioning:

H plate final positioning

Straight plates final positioning

3 - Other Indications

Regardless of the Airlock[®] plate used for different indications, follow the same steps for inserting Airlock[®] screws and the use of associated instruments specified in the *Introduction - paragraphs 3.1.1 and 3.1.2.*

Examples of Airlock® plating system use:

1 - Lisfranc Arthrodesis

Lisfranc H-plate

Lisfranc T-plate

2 - Lapidus Arthrodesis

Lapidus plate

Presslock[®] Fusion Straight plate

3 - Closing Wedge Osteotomy

Closing wedge plate - Wedge 0 mm

4 - Calcaneocuboid Arthrodesis

Presslock[®] Fusion H plate

5 - Naviculocuneiform Arthrodesis

Presslock[®] Fusion Straight plate

6 - Evans Osteotomy

Presslock[®] Fusion H plate

8 - Dwyer Osteotomy

7 - Malerba Osteotomy

Presslock[®] Fusion Straight plate

Presslock[®] Fusion Straight plate

Implants

MTP

Ref	Description	
PL010134	Short Right	00
PL010234	Short Left	00
PL010140	Standard Right	00000
PL010240	Standard Left	000000
PL010152	Long Right	
PL010252	Long Left	······································

Lisfranc

Ref	Description	
PL050101	T - Short	000008
PL050102	T - Long	
PL050201	H - Small	
PL050202	H - Medium	
PL050203	H - Large	

Basal Osteotomy

Ref	Description	
PL020100	Closing Wedge Right	
PL020200	Closing Wedge Left	
PL020103	Open Wedge 3 Right	
PL020203	Open Wedge 3 Left	
PL020104	Open Wedge 4 Right	
PL020204	Open Wedge 4 Left	
PL020105	Open Wedge 5 Right	
PL020205	Open Wedge 5 Left	

Airlock[®] Screws Ø 3.0 mm & Ø 3.5 mm

Universal Fusion Plates

Ref	Description	
PL040117	Straight plate - Short	CENICO
PL040120	Straight plate - Medium	
PL040123	Straight plate - Long	
PL040217	H-Plate - Short	2
PL040220	H-Plate - Medium	
PL040223	H-Plate - Long	

Utility

Ref	Description	
PL040016	2 Holes Length 16	CINC
PL040022	3 Holes Length 22	000
PL040028	4 Holes Length 28	00==00
PL040034	5 Holes Length 34	00000
PL040040	6 Holes Length 40	000080
PL040046	7 Holes Length 48	000000000

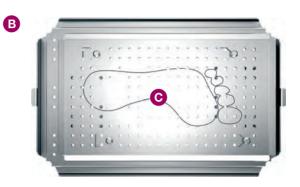
Lapidus		
Ref	Description	
PL030200	Step 0	

	Locking	Locking Screws		Screws	
Ø	Ref	Length	Ref	Length	
Ø 3 mm	SP0130xx	10 to 30	SP0230xx	10 to 30	
Ø 3.5 mm	SP0135yy	10 to 40	SP0235yy	10 to 40	

With xx going from 10 to 30 with 2mm increments. With yy going from 10 to 40 with 2mm increments.

K-Wires

Ref	Description
33-0214-100	K-Wire Ø 1.4 lg 100 TR/RD
33-0216-150	K-Wire Ø 1.6 lg 150 TR/RD


Nexis Screws Ø 4.0 mm

Ø	Length	Ref
4.0	18 to 60	SC0500xx

With xx from 18 to 50 $\,$ in 2mm increments, then from 50 to 60 in 5 mm increments.

Instrumentation

Empty Trays / Lids

Ref	Description	
ACC1002P0001	Airlock [®] Empty Tray	Α
ACC1002P0002	Airlock [®] Tray Lid	В
ACC1002P0005	Airlock® Support Plate	С

Universal Instruments

Ref	Description	
XMS01001	K-Wires / Guide Wires Tube**	C
XKW01002	Cleaning Wire Ø 1.4 mm for Ø 4.0 mm Instruments	0
XGA01002	Depth Gauge	
XHA01001	Ratchet A0 Handle	

** K-wire (33-0214-100) : Ø 1.4 for Nexis Ø 4.0 mm screws. K-wire (33-0216-150) : Ø 1.6 for Airlock reamers.

System Instrumentation

Ref	Description	
XMS01004	Airlock [®] Drill Guide Holder	- 00
XPP01003	Airlock® Spheric Positioning Pin	
XSD02002	Airlock® T8 AO Screwdriver Tip	
XGA01003	Airlock [®] Screw Measurer	

Airlock[®] V1 Instruments

Ref	Description	
XDG01010	Airlock [®] Polyaxial Drill Guide for Non Locking Screws	
XDB01005	Airlock [®] Drill Bit Ø 2 mm	Read The second s
XDB01006	Airlock [®] Drill Bit Ø 2.5 mm*	2014 Add - 444
XDG01011	Airlock [®] Compressive Drill Guide	
XDG01007	Airlock [®] Locking Drill Guide Ø 2 mm	
XDG01008	Airlock [®] Locking Drill Guide Ø 2.5 mm*	
XMS01005	Airlock [®] Plate Holder	

* Optional.

Airlock® Instruments on-demand: These on-demand instruments can be ordered and exchanged with the Airlock® V1 instruments as listed above. The Presslock® drill-guide must be used in the Presslock® holes of the universal Fusion Plates.

Airlock® V2 instrument: drill-bits and windowed drill-guides

Ref	Description	
XDB01021D	Drill Bit Ø 2 for Windowed Drill-Guide	·····
XDB01022D	Drill Bit Ø 2.5 for Windowed Drill-Guide*	
XDG01020	Windowed Polyaxial Drill-guide	
XDG01022	Windowed Compressive Drill-guide Ø 2	
XDG01023	Presslock [®] Gold Drill-Guide	
XDG01021	Windowed Locking Drill Guide Ø 2 and Ø 2.5 mm	

* Optional.

Optional Instruments

Ref	Description	
XFP01006	Closed-arms Distratctor	\triangleleft
XFP01008	Outspread Arms Bone Distratctor	\triangleleft
348-150S	Threaded K-wire Ø 1.6 lg 150 TR-RD Stérile	
353-200S	Threaded K-wire Ø 2.5 lg 200 TR-RD Stérile	

Reamers & Plate Benders

Ref	Description	
ACC1002P0006	Airlock [®] Reamers-Bender Caddy Module	D
XMS01010	Airlock [®] Plate Bender	
XRE01016	Airlock® Convex Reamer Ø 18 mm	
XRE01017	Airlock [®] Convex Reamer Ø 20 mm	
XRE01018	Airlock® Convex Reamer Ø 22 mm	
XRE01019	Airlock [®] Concave Reamer Ø 18 mm	
XRE01020	Airlock® Concave Reamer Ø 20 mm	
XRE01021	Airlock® Concave Reamer Ø 22 mm	

Nexis 4.0 Module

Ref	Description	
ACC1002P0004	Nexis Ø 4 Module	E
XDG01009	Nexis Double Drill Guide Ø 4	
XSD04001	Nexis AO T10 Screwdriver Tip for 4.0 mm Screws	
XRE01007	Nexis Countersink Reamer Ø 3.7 mm for 4.0 mm Screws	
XDB01007	Nexis Cannulated Ø 2.7 mm Drill Bit for 4.0 mm Screws	12.84
XGA01004	Nexis Graduated Ruler 100 mm	

Trial Implants

MTP Plate Trials

Ref	Description	
ACC1006P0006	Airlock [®] MTP Plate Trial Holder	
XTI01301	Airlock [®] MTP Plate Short Trial - Left	0000
XTI01302	Airlock [®] MTP Plate Short Trial - Right	0000000
XTI01001	Airlock [®] MTP Plate Trial - Left	000000
XTI01002	Airlock [®] MTP Plate Trial - Right	
XTI01401	Airlock [®] MTP Plate Long Trial - Left	
XTI01402	Airlock [®] MTP Plate Long Trial - Right	
		-

Universal Fusion Plate Trials

Ref	Description	
ACC1006P0007	Presslock [®] Fusion Plate Trial Holder	
XTI04117	Presslock [®] Fusion Straight Trial - Small	0==0
XTI04120	Presslock [®] Fusion Straight Trial - Medium	
XTI04123	Presslock [®] Fusion Straight Trial - Large	0
XTI04217	Presslock [®] Fusion H Plate Trial - Small	} €
XTI04220	Presslock [®] Fusion H Plate Trial - Medium	}-6
XTI04223	Presslock [®] Fusion H Plate Trial - Large	}

Lisfranc Plate Trials

Ref	Description	
ACC1006P0005	Airlock® Lisfranc Plate Trial Holder	
XTI05010	Airlock® Lisfranc Plate H - Small	
XTI05020	Airlock [®] Lisfranc Plate H - Medium	
XTI05030	Airlock® Lisfranc Plate H - Large	
XTI05040	Airlock [®] Lisfranc Plate T - Short	8
XTI05050	Airlock [®] Lisfranc Plate T - Long	2

Lapidus Plate Trials

Ref	Description	
ACC1006P0004	Airlock [®] Lapidus Plate Trial Holder	
XTI03010	Airlock [®] Lapidus Plate Step 0 Trial	(tang)to
XTI03011	Airlock [®] Lapidus Plate Step 1 Trial	(Canal)
XTI03012	Airlock [®] Lapidus Plate Step 2 Trial	(Complex)
XTI03013	Airlock [®] Lapidus Plate Step 3 Trial	(Canada)

Trial Implant - Open Wedge Trials

Ref	Description	
ACC1006P0001	Airlock [®] Open Wedge Plate Trial Holder	
XTI02010	Airlock [®] 0 mm Wedge - Left	c-critter
XTI02013	Airlock [®] 3 mm Wedge - Left	cas
XTI02014	Airlock® 4 mm Wedge - Left	cong
XTI02015	Airlock [®] 5 mm Wedge - Left	cas
XTI02020	Airlock [®] 0 mm Wedge - Right	call
XTI02023	Airlock® 3 mm Wedge - Right	config.
XTI02024	Airlock® 4 mm Wedge - Right	call
XTI02025	Airlock [®] 5 mm Wedge - Right	config.

Utility Plate Trials

Ref	Description	
ACC1006P0003	Airlock [®] Utility Plate Trial Holder	
XTI04016	Airlock [®] Utility Plate 2 Holes Trial	Case
XTI04022	Airlock [®] Utility Plate 3 Holes Trial	Cômit
XTI04028	Airlock [®] Utility Plate 4 Holes Trial	Committee
XTI04034	Airlock [®] Utility Plate 5 Holes Trial	CC000000
XTI04040	Airlock [®] Utility Plate 6 Holes Trial	0000000
XTI04046	Airlock [®] Utility Plate 7 Holes Trial	000000000

Notes

CAUTION: Federal (USA) law restricts this device to sale by or on the order of a surgeon. Rx only.

This document is intended solely for the use of healthcare professionals. This technique was developed in conjunction with healthcare professionals. A surgeon must always rely on his or her own professional clinical judgment when deciding whether to use a particular product when treating a particular patient. Novastep does not dispense medical advice and recommends that surgeons be trained in the use of any particular product before using it in surgery. The information presented is intended to demonstrate a Novastep product. A surgeon must always refer to the package insert, product label and/or instructions for use, including the instructions for Cleaning and Sterilization (if applicable), before using any Novastep product.

Novastep Inc., or its affiliates, own, use or have applied for the following trademarks or service marks: Airlock, Novastep. All other trademarks are trademarks of their respective owners or holders.

www.novastep.life

© 2020 Novastep

Ref: Air-ST-Ed4-07-20-EN

Distributed by:

Novastep Inc. 930 Sylvan Ave, Suite 125 Englewood Cliffs, NJ 07632 (877) 287-0795 cs@novastep-us.com

Novastep SAS Espace Performance III -Bâtiment P 35769 Saint-Grégoire, France